Monte Carlo approximations of the Neumann problem

نویسندگان

  • Sylvain Maire
  • Etienne Tanré
چکیده

We introduce Monte Carlo methods to compute the solution of elliptic equations with pure Neumann boundary conditions. We first prove that the solution obtained by the stochastic representation has a zero mean value with respect to the invariant measure of the stochastic process associated to the equation. Pointwise approximations are computed by means of standard and new simulation schemes especially devised for local time approximation on the boundary of the domain. Global approximations are computed thanks to a stochastic spectral formulation taking into account the property of zero mean value of the solution. This stochastic formulation is asymptotically perfect in terms of conditioning. Numerical examples are given on the Laplace operator on a square domain with both pure Neumann and mixed Dirichlet-Neumann boundary conditions. A more general convection-diffusion equation is also numerically studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

A Comparative Study of the Construction of Positron Emission Tomography/Computed Tomography Facilities in Three South African Hospitals

Introduction: Development of higher energy modalities such as positron emission tomography/computed tomography (PET/CT), has led to more complex shielding problems. This is due to several factors, such as the radiopharmaceutical relatively high-administered activity, high patient throughput, and high energies of 511 kilo-electron volt (keV) positron annihilation photon...

متن کامل

Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach

When there is parameter uncertainty in the constraints of a convex optimization problem, it is natural to formulate the problem as a joint chance constrained program (JCCP) which requires that all constraints be satisfied simultaneously with a given large probability. In this paper, we propose to solve the JCCP by a sequence of convex approximations. We show that the solutions of the sequence o...

متن کامل

Variance reduction in sample approximations of stochastic programs

This paper studies the use of randomized Quasi-Monte Carlo methods (RQMC) in sample approximations of stochastic programs. In high dimensional numerical integration, RQMC methods often substantially reduce the variance of sample approximations compared to MC. It seems thus natural to use RQMC methods in sample approximations of stochastic programs. It is shown, that RQMC methods produce epi-con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013